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Synopsis 

Transfer function analyses were carried out on a linearized perturbation modelof melt spinning 
previously developed. Results are as follows. (1) Formal proof was obtained of the criterion of 
spinline stability stated in terms of transfer function. (2) A new concise statement of the stability 
criterion was obtained: the spinline is stable when the transfer function G ~ ( s )  connecting the spinline 
tension to the spinline velocity does not have a zero in the right-hand half of the complex s plane. 
(3) Effects of various external disturbances on filament unevenness were predicted theoretically 
by expressing the transfer function between each disturbance input and cross-sectional area at  
take-up in the form of frequency response Bode diagrams. 

INTRODUCTION 

A number of reports are now available on the mathematical analysis of spinline 
transients. One can refer to the reviews by Petrie and Denn,' White and 
Ide,3 Ziabi~ki ,~ and Petrie,5 among others. So far, transients in melt spinning 
have been studied from two major points of view. One is spinline stability, and 
the other is sensitivity. 

The problem of sensitivity concerns the conditions under which spinlines taken 
up at constant speed become unstable to develop draw resonance, a severe sus- 
tained oscillation in cross-sectional area and tension. 

Sensitivity concerns the quantitative dynamic effects of various disturbance 
inputs to the spinline on filament quality. One such example is the effect of 
time-dependent cooling air speed on the unevenness of the filament cross-sec- 
tional area. 

In the present work, the authors introduce a formal proof to the criterion of 
spinline stability stated previously without full proof by Kase and co-workers6-8 
and go on to develop a systematic computation procedure for the theoretical 
prediction of the effects of external disturbances on filament unevenness. 

Transfer function analysis of spinline sensitivity has been described in a 
conference proceedingss and in an unpublished in-house report.g To the authors' 
knowledge, however, the present work is the first full article devoted to this 
subject. The definition and major attributes of transfer function are reviewed 
in the Appendix. 

GOVERNING EQUATIONS 

The transfer function analyses in the present work are based on the mathe- 
matical model of melt spinning developed by Kase and Matsuolo and subse- 
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quently slightly extended by K a ~ e . ~  The model consists of a set of simultaneous 
partial differential equations, eqs. (1) through (13), reproduced from the liter- 
ature with some changes: 
Continuity 

bA b 
- + - ( A v ) = O  at ax 

Momentum 

- 0  
dF -- 
ax 

Power law constitutive 

Energy 
dT dT 2 f i h ( T * - T )  - + u - - I  
at c, P a  

Temperature vs. viscosity 

p = pa (&X‘+273 + 
T - 60 

Heat transfer correlation 
0.333[ ) 2 r 1 6 7  

Nu=0.42Re 1+ 

Nusselt number definition 

Reynolds number definition 

vd 2 v O  Re=-  =- 
vair v a i r f i  

Kinetic viscosity of air 

Heat conductivity of air 
ve = 0.290 cm2/s 

k e  = 0.808 X 10-4 cal/cm - s - C (10) 
In eqs. (1) through (lo), x is distance from the spinneret, t is time, A is local 

filament cross-sectional area, u is local filament speed, F is spinline tension, T 
is filament temperature, 0 is tensile viscosity, n is power law exponent, h is heat 
transfer coefficient at filament surface, p is polymer density, C, is specific heat 
of the polymer, d is filament diameter, E is activation energy, B is a constant 
equal to 100, vair is the kinetic viscosity of air, and k d r  is the heat conductivity 
of air. Units are in cgs, except for tension F and viscosity P, which are expressed 
in gram force (see Fig. 1). 

The material constant 0.. is the tensile viscosity at T = ~3 and is an attribute 
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Constant TersiOn Constant takeup 

Fig. 1. Schematic of melt spinning. 
speed 

somewhat resembling the intrinsic viscosity of the polymer. In the present 
mathematical spinline model, P- of the polymer emerging from the spinneret 
hole is allowed to vary with time around its steady-state value &. 

Pdt ’ )  = P*(t’)& (11) 

Note that P.. and the dimensionless factor p* are functions of spinneret time t’ 
rather than the present time t ;  t’ is the time a particular fluid element now ( t  
= t) located at x = x has left the spinneret. The cross blow air speed u, and 
ambient air temperature T* are, in general, functions of distance x .  

Simplifying assumptions made in deriving the above governing equations 
are: 

(1) Purely extensional local flow field. 
(2) Newtonian viscosity and its dependence on temperature alone. 
(3) Constant E o l p e r  density p and specific heat C,. 
(4) Constant /3-, E, Y&, and &. 
( 5 )  Uniform temperature and velocity u over filament cross section. 
(6) Neglect of viscous dissipation in the energy equation. 
(7) Neglect of heat conduction in the axial direction. 
(8) Inclusion of radiant heat transfer in the convective heat transfer coefficient 

(9) Neglect of extrudate swell effects. 
(10) Neglect of inertia, surface tension, gravity, and air drag. 
Boundary conditions at  the spinneret are: 

h. 

(12) 
A = Am = const. 
T 2’00 const. a t x  - 0  

The downstream boundary condition of constant take-up speed is 

u = urn = const. 

u = uw = const. at  x = L (13) 
A boundary condition alternative to eq. (13) is to specify spinline tension F ( t  ) 

(14) 

as given a pnori (see Fig. 1). 

F ( t )  = any function of time given a priori 
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The only unspecified parameter values 6- and E in the above governing 

(1) Experimentally measure A ( x ) ,  T ( x ) ,  and F under a representative 

(2) Substitute the measured A ( x ) ,  T (x ) ,  and F into eq. (16) below to obtain 

Au = Amow = const. ,8*(t) = 1 (15) 

equations can be determined experimentally following the procedure below: 

steady-state spinning condition. 

a P(T) correlation: 

Equations (15) and (16) can be derived from eqs. (1) and (3) assuming steady 
state. 

(3) Determine the values of Pm and E by fitting the above experimental @(T) 
correlatio_n with eq. (5 )  considering eqs..(11) and (15). 

These fl ,  and E values based on experimental data taken in a single steady- 
state spinning were foundlOJ1 to lead to both steady-state and transient solutions 
of the governing equations that reasonably agree with experimental measure- 
ments over a wide range of spinning conditions. 

For general discussion, we further render the above governing equations di- 
mensionless by defining the dimensionless variables in Greek characters: 

x = {L t = TLIu, A = ( A ,  u = $urn 
T = BT, t' = T / L / U ,  u, = $,u- 
T* = O*T, 

Substitution of coefficient correlations ( 5 )  to (11) into eqs. (1) to (4) reduces 
the number of equations from 11 to 4. By further substituting eqs. (17) into the 
resultant 4 equations, the governing equations reduce to the dimensionless form 
below ready for analytical or numerical solution: 
Continuity 

Momentum 

-= aq 0 
a r  

Newtonian constitutive 

Energy 
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where 
St = 1-37 x 19-4 p - l C ~ - l A o O - 0 . 8 3 3 u ~ - 0 . 6 6 7 L  (22) 

Note that in an isothermal spinning, filament temperature T is everywhere 
equal to spinneret temperature Too to make 8 equal to unity. This in turn 
simplifies the right-hand side of eq. (20) to q/(Pf). Also in isothermal spinning, 
ambient air temperature 8* is equal to fdament temperature 8. Therefore, both 
sides of eq. (21) are zero, causing the energy eq. (21) to drop out of the governing 
equations. 

Upstream boundary conditions at the spinneret are 

f = $ = O = l  at{=O (23) 

and the downstream boundary condition of constant take-up speed is 
II. = &, = u w / u ~  = const. 

where & is the steady-state drawdown ratio. 

at {=  1 (24) 

STEADY-STATE SOLUTION 

The procedure to compute the steady-state solution of the dimensionless 
governing eqs. (18) through (21) is essentially identical to the steady-state so- 
lution of eqs. (1) through (4) discussed previously'oJ2 by one of the present au- 
thors. One simply sets the time derivative a/& equal to zero and solves eqs. (18) 
and (21) as simultaneous ordinary differential equations. 

First of all, at steady state the continuity eq. (18) reduces to 

E4 = 1 (25) 
to enable the elimination of velocity $ from the governing equations. Further, 
in the special case of isothermal spinning, the energy eq. (21) drops out of the 
governing equations as discussed above to yield an analytical steady-state so- 
lution, eq. (26) for Newtonian fluids (n = l) below, in which subscript zero de- 
notes the steady state and lClw is the drawdown ratio defined in eq. (24): 

Eo(0 = 1/40 = 4 w - r  (26) 
Equation (26) is a straight line on a semilog graph. 

In most cases, other than the above numerical computation is required to 
obtain the steady-state solution. Usually, a simple first-order backward dif- 
ferencing scheme suffices to obtain a reasonably precise solution at minimal 
computer time requirement. I t  should be noted that spinline tension 7 consti- 
tutes a part of the solution to be determined in a Newton-Raphson iteration 
scheme to satisfy the downstream boundary condition, eq. (24). In most cases, 
the solution converges in three or four iterations. In the present work, a com- 
puter program called MS3 developed in a previous work7 was used to compute 
the steady-state solutions. The program allows cooling air temperature 8* and 
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cooling air speed $y to vary with distance {, though 8* and GY were considered 
constants in the present work. 

PERTURBATION ABOUT STEADY STATE 

As was discussed in detail previously,:Jo the governing eqs. (18) through (21) 
can be linearized about the steady state to obtain a set of perturbatiop yuations. 
In linearizing the governing equations, the perturbation variables [, $, 8, $ y ,  8, 
and ;I are defined below in Greek letters: 

In eqs. (27), subscript zero denotes the steady state. When eqs. (27) are sub- 
stituted into eqs. (18) to (22) and the second- and higher-order terms in the 
perturbation variables are ignored, the perturbation eqs. (28) through (30) below 
are obtained for the Newtonian case of n = 1: 
Continuity 

Constitutive plus momentum 

Energy 

The variable p defined in eq. (31) above is the steady-state residence time 
in the region bounded by { = 0 and { = {. The use of s in place of {as distance 
variable greatly simplifies the perturbation equations since it eliminates the scale 
conversion factor $0 between time and distance. 

Coefficients f 1 through f 6  are ad functions of 5" and are respectively equal in 
expression to the f l ( z )  through f&) given previously7.lo when each of the latter 
is multiplied by the factor Llv, to make them dimensionless. It is quite sig- 
nificant that coefficients f l  through f 6  are completely determined by the 
steady-state solution, [0(0 and &(n, of the nonlinear governing eqs. (18) through 
(21). 

Upstream boundary conditions for the perturbation equations under no dis- 
turbance to the spinneret are 

$ = $ = j = o  a t s = o  (32) 
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Fig. 2. Differencing mesh for the solution of perturbation equations. 

and the downstream boundary condition of constant take-up speed is when the 
take-up is undisturbed 

The initial condition is 

$ = $ = J = o  a t T = o  (34) 

for transients starting from steady state. A boundary condition alternative to 
eq. (34) is 

i j  = 0 or i j = u(r)  = unit step function (35) 

representing spinlines subject to constant tension (see Fig. 1). 
'@roughout the present study, a unit step increase in i j  or qr or one of $, &,8, 

and ,l3 a t  the spinneret ($ = 0) were considered as disturbance inputs to the 
linearized spinline model. As eqs. (11) and (27) show, extrusion viscosity per- 
turbation b is a function of spinneret time r', which happens to be 

r / = r - p  (36) 

in the perturbation model. 
Since the numerical solution of the perturbation eqs. (28) to (30), though in 

dimensioned form, was discussed in detail previ~usly,~Jo just an outline of the 
solution procedures is given below. 

The latter half of program MS3 is devoted to the transient solution of per- 
turbation eqs. (28) to (30). Program MS3 derives coefficients f l (p)  through 
f ~ (  $) from the steady-state solution computed in the first half of the program 
in the form of a table and proceeds to solve eqs. (28) to (30) for transients. 

The partial derivatives in eqs. (28) to (30) were approximated by first-order 
backward differencing along the 45-degree characteristic line shown in Figure 
2 to obtain a set of differencing equations. Integers i and j are increment 
numben in the direction of T and p, respectively, and w is any one of the de- 
pendent variables. 

(37) 
aw aw U i j  - wi-l,j-l 
a~ a p  A 
-+-= 
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5 7  
Z 6  
d c =  
0 4  

A = A r = A S  (39) 
Under this differencing scheme, the values of dependent variables at point 1, 
or the (i, j )  point in Figure 2, can each be expressed as an explicit function of the 
values of dependent variables at points 3 and 4. This enables a consecutive 
marching computation of all mesh points in one time step when tension per- 
turbation $ is specified as given. However, when the downstream boundary 
condition of constant take-up speed must be met, tension perturbation 4 is de- 
termined in a Newton-Raphson iteration‘process to satisfy eq. (35). 

Shown in Figure 3 are two different responses of cross-sectional area at 
take-up position S = S, to a unit-step increase in extrusion viscosity: 

B = 4 7 ’ )  = u(7 - s,) (40) 
as computed by means of program MS3 and drawn automatically by a X-Y 
plotting machine without human intervention in data handling. Time scale is 
in multiples of the steady-state residence time S, to the take-up point defined 
in eq. (33) rather than in time 7 itself. 

Parameter values used in computing the two curves in Figure 3 and throughout 
the rest of this paper, unless stated otherwise, are as listed below. 

p = 0.83 g/cm3 C, = 0.7 cal/g - deg T* = 20°C 
T, = 270OC A, = 5.641 X cm2(d = 0.0268 cm at x = 0) 

CONSTRNT TJNSION SPINLINE 

uw = 1000 m/min = 1667 cm/s uy = 30 cm/s (41) 

,%, = 0.040 gfs/cm2 E = 3500 deg B = 100 deg 

n = 1 A = c/400 

From (41) above, 

+w = 52-67 +y = 0.9478 e* = 0.1111 

a 

Fig. 3. Transient linearized response of the take-up cross-sectional area to unit (1%) step increase 
in extrusion viscosity. Both under constant take-up speed and constant tension. 
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The spinning conditions given in (41) and (42) above are for a typical low-speed 
melt spinning*of polypropylene filament. 

The lower f (G, T )  curve in Figure 3, eventually tending to zero, is for the 
downstre- boundary condition of constant take-up speed given in eq. (33); and 
the upper f (G, T )  curve that reaches a new steady state at the elapse of one 
steady-state residence time a; is for the boundary condition of constant spinline 
tension 6 = 0 as given in eq. (35). 

In fact, for isothermal spinlines of Newtonian and power law fluids subjected 
to stepwise increase in extrusion viscosity under the boundary condition of 
constant tension, analytical transient solutions are available'3 for both pertur- 
bation eqs. (18) to (21) and nonlinear governing eqs. (28) to (30) and the per- 
turbation solution reaches a new steady state in one steady state residence time 
G and the nonlinear solution in a certain finite time. 

Solution of nonlinear governing eqs. (18) to (21): 

Disturbance input: @*(T/ )  = 1 + p** u(7') (43) 

Initial steady state: f=  $,-r when T d 0 (44) 

Transient: f = (1 - T lo&,) -+if 

when 

Second steady state: f = +,-f/'/(l+@**) 

when 7 > Tend 

Solution of perturbation eqs. (28) to (30): 

Disturbance input: /3 = U ( T / )  

Initial steady state: $ = 0 when T < 0 

(45) 

T 1% $w 

1 - 7 log +, 
Transient: 

$ = -log (1 - r log+,) - 

when 

where r = log(l+ !? log $w) (49) 

Second steady state: $ = {log +, when T > Tend (50) 

Equations (46) and (50) do not contain time T to show that the spinline has 
reached a new steady state. A t  present, the authors are not able to show ana- 
lytically that the transient is confined to the region OAC in Figure 4 under the 
general nonisothermal conditions. However, the reasoning below shows that 
this is exactly the case. 

Referring to the schematic in Figure 5, point B is the present location of the 
fluid element which left the spinneret hole A at time r = 0 when the stepwise 
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Fig. 4. Solution domain: distance r (= steady-state residence time) vs. time 2. 

increase in extrusion viscosity occurred. Spinline tension f i  is the only medium 
which can convey the effects of deformation taking place in one part of the 
spinline to another, whereas, under the boundary condition of constant tension, 
this medium cannot function. Therefore, the deformation of the spinline be- 
tween points A and B under constant tension is independent of that below point 
B, the AB part thus necessarily being in a new steady state under the new spin- 
ning conditions defined by the step disturbance input. This confines the tran- 
sient deformation to the part of the spinline below point B corresponding to the 
region OAC in Figure 4. In other words, the spinline at a certain distance from 
the spinneret enters the new steady state as soon as the viscosity border B goes 
past that point. 

The fact that constant-tension spinlines always settle to a new steady state 
after a stepwise disturbance precludes their chance of experiencing any growing 
or sustained oscillation to make them always stable. This gives a physical ex- 
planation to the inherent stability of constant-tension spinline, first discovered 
by Pearson and Mat0~ich.l~ 

Both the nonlinear and linear solutions shown in eqs. (43) to (50) indicate that 
a stepwise downward-facing area discontinuity develops at the border B between 
the high and low viscosities, as shown in Figure 5, with the discontinuity growing 
as point B f l o ~  down the spinline. In fact, this area discontinuity corresponds 
to the jump in [(G, 7) shown in Figure 3. 

COMPUTATION OF TRANSFER FUNCTIONS 

When y ( 7 )  is the output signal emerging from the linearized spinline model 
in eqs. (28) to (30) in response to an input signal % ( T I ,  then the transfer function 

Fig. 5. Spinline side profile after a stepwise increase in extrusion viscosity. 



MELT SPINNING. VIII 4449 

G (s) representing that particular dynamic input-output relation is 

G (s) = L IY(7) ) lL  (2 (7)l (51) 

as discussed in Appendix A. Further, when ~ ( 7 )  is a unit step function, eq. (51) 
becomes 

G ( s )  = L I y ( 7 ) l / L M 7 ) l =  sLly(7)l  (52)  

or, in the frequency domain, 

In principle, therefore, GGo) can be numerically computed by solving the 
perturbation eqs. (28) to (30) for the response y ( 7 )  of the linearized spinline 
model to a unit step disturbance input U ( T )  and by Laplace transformation of 
the output y (7 )  by means of eq. (53). 

In practice, however, precise Laplace transformation becomes difficult when 
the step response y ( ~ )  takes a long time to converge to a fixed value, as in the 
lower curve in Figure 3 for the constant take-up speed spinline. Furthermore, 
when the spinline is unstable, step response Y ( T )  becomes a diverging oscillation, 
rendering the numerical Laplace transformation in eq. (53) impossible. 

Fortunately, these difficulties can be avoided by means of an alternative 
method8 of computing G(s)  in which G(s)  is decomposed into four transfer 
functions G,( s )  through G&) associated with constant-tension spinline, which 
is known to be always stable. 

The first step in the alternative method is to replace the constant-speed 
take-up roll with a constant-tension device while keeping other conditions un- 
changed (see Fig. 1). The block diagram in Figure 6 shows the dynamics of the 
constant-tension spinline thus obtained. Considered in Figure 6 are two input 
signais, extrusion Visqosity p ( f )  and spiniin~ tension j j ( ~ ) ,  and two output signals, 
cross-section$ area [( c, T )  and velocity $( G, T ) ,  both at  take-up distance L. 
Input signal P(T') can be replaced by any other input signal and $(G, 71, by any 
other output signal without affecting the validity of the present discussion. It 
is always possible to numerically compute the four transfer functions G'lGw) 
through G ~ G w )  since the constant-tension spinline they represent is always 
stable. Considering that the step response Y ( T )  always settles to a constant value 
H at 7 = 1T, under constant tension, the integrations in eq. (53) can be broken 
down into two parts to obtain eq. (54): 

+ H(cos US, - j sin US,) (54) 
A highly accurate numerical Laplace transformation is possible with eq. (54) 
since, unlike in eq. (53), the numerical integration in eq. (54) is over the short 
range from 7 = 0 to 7 = c. 
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Fig. 6. Feedback mechanism that realizes the constant-speed take-up. 

The next step in computing GGw) is to consider an imaginary negative feed- 
back loops sho-m as dotted lines in Figure 6. In the feedstock loop, the tak!-up 
point velocity $(S,, 7) is subtracted from an arbitrarily given target velocity $t (7) 

to obtain the error 2(7) which in turn is multiplied by a constant gain factor K 
to become tension perturbation i ( 7 ) .  The feedback loop is thus essentially an 
automatic control system which detects the spinline velocity at take-up position 
P = c and tries to bring the velocity $(&, 7) to the target velocity $ t ( 7 )  by 
varying the spinline tension in proportioq to the error 2(7). With the feedback 
loop, the Laplace transforms of 2(7) and E( $,, 7) are expressed as 

Equation (55) above shows that-error z(7) tends to zero as feedback gain K goes 
to infinity to mFke the velocity $(S,, 7) at take-up distance coincide with the 
target velocity $ (7). 

$(S,, T) = $ t ( 7 )  when K = - (57) 

Further, when the target velocity $t (7) is equal to zero or a constant, an infinitely 
large K brings about a constant take-up speed spinline. Then, eq. (56) reduces 
to eq. (58): 

The transfer fpction G between extrusion viscosity &T/ )  and take-up cross- 
sectional area {( S,, T )  is therefore 
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(59) 

and that between target velocity 4t (T) and g( $,, T )  is 

Equations (59) and (60) are two examples of decomposing a transfer function 
G representing a constant take-up speed spinline into transfer function! GI 
through G4 representing a constant tension spinline. In Eq. (58) above, P(T’) 
can be replaced by any other disturbance input variable and ,$( $,, T ) ,  by any other 
output variable without changing the form of the equation. Equations (a), (59), 
and (60) enable the expression of G(s) = GGw) in a frequency domain Bode di- 
agram or in a vector locus. 

Three computer programs, DMS, DMA, and PLT, were developed to re- 
spectively carry out the Laplace transformation in eq. (541, the vector arithmetic 
in eq. (59) or eq. (60), and the automatic drawing or a Bode diagram or a vector 
locus to record the computed GGw). Later, the above three programs were 
combined serially together with MS3 to form a single TSS program TRANS, 
having 1770.Fortran statements. Thus, merely giving spinning conditions to 
TRANS results in final diagrams delivered by the X-Y plotter. In spite of its 
considerable length, TRANS requires modest computer time thanks mainly to 
the linearity of the perturbation model. Typical computer time was 6270 ms 
CPU time on a FACOM M-200 TSS service to obtain one Bode diagram 
curve. 

STABILITY CRITERION IN TERMS OF TRANSFER FUNCTION 

Under certain spinning conditions, melt spinlines become unstable and develop 
a severe sustained oscillation in tension and cross-sectional area.6J4J5 This 
instability is known as the draw resonance.lJ6 

For a draw resonance to occur, (1) the spinline has to be taken up at a constant 
speed, (2) ambient air temperature 8* has to be high enough so that the spinline 
does not cool down to the solidification temperature of 60°C at the take-up, and 
(3) the draw ratio $w = U J U ~  must be above a certain critical value. Spinhes 
in the molten state can be taken up at a constant speed by passing the filament 
into a water quench bath before taking up. 

Kase et d.,6 h e , ’  and Kase and Denns stated that a melt spinline is unstable 
when the vector locus of the t r p f e r  function (the present G2) between spinline 
tension 6 and spinline velocity $( $,, T) at the take-up distance encircles the origin 
of the complex plane. This statement, however, was made rather intuitively 
without full proof. What follows is a proof for the above stability criterion. 

As discussed in the preceding section, the transfer function G (s) in eqs. (59) 
and (60) is for a constant take-up-speed spinline, whereas its four components 
G,(s )  through G4(s)  are for a constant-tension spinline. For the above constant 
take-up-speed spinline to be unstable, G(s) must have a pole in the right-hand 
half of the complex s plane. But none of Gl(s) to G&) have a pole in the 
right-halfs plane since the constant-force spinline is always stable. Then, the 
only chance G ( s )  can have a pole in the right-hand halfs plane is for G ~ ( s )  to have 
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a zero in the right-hand half s plane since only G&) consistently appears as 
denominator. 

The above reasoning leads to the statement of the stability criterion: A con- 
stant take-up-speed spinline i? unstable when the transfer function G&) con- 
necting tension $ to velocity $4S,, T )  has a zero in the right-hand half of the 
complex s plane. 

Further, according to the theories of complex functions, the vector locus G2Gw) 
encircles the origin of the complex plane 2-P times in the clockwise direction 
when G ~ ( s )  has 2 zeros andP poles in the right-hand half ofthe s plane, whereas 
P is known to be equal to zero due to the stability of constant-tension spinline. 
Therefore, the number of times the G2(jw) locus encircles the origin is equal to 
2 number of instability causing zeros of G ~ ( s ) .  This leads to the following al- 
ternative expression of the stability criterion: “A constant take-up-speed 
spinline is unstable when the G2(ju)  locus encircles the origin of the complex 
plane.”- For its geometric nature, this expression of stability criterion is 
particularly useful in the numerical determination of the conditions of neutral 
stability. 

Figure 7 shows the process in which the response of cross-sectional area g( S,, 
7) at constant-speed take-up point to a unit step increase in take-up speed $(S,, 
7) changes from stable converging oscillation to unstable diverging oscillation 
as the ambient air temperature T* is raised from 20° to 271°C (8* = 0.074 to 1.0). 
Here, the take-up speed is constant in the sense that it remains constant after 
T = 0. Figure 8 shows the G2(jw)/H loci corresponding to the four step responses 
in Figure 7. G2 was normalized with respect to the zero frequency gain H in eq. 
(53) for the convenience of graphic presentation. Note that the G2(jw) /H loci 
for T* = 160 and 271OC encircle the origin to indicate instability. 

A Fortran program called MS3ST was developed to automatically search the 
neutral stability conditions. The MS3 part of MS3ST computes the velocity 
transient $(S,, T )  in response to a unit step increase in tension fi. The DMS part 
does the Laplace transformation of the +( S,, T )  to obtain G ~ ( j w ) .  The rest of 
MS3ST increases the value of a chosen parameter, in this case ambient air 

10 
!3i 
0 

E 7  
E 6  

Z l l  
S RIR TEMPERRTURES r 

a r -6 

s -8 -’! -10 -9 
M U L T I P L E  OF RESIDENCE TIME 

Fig. 7. Response of take-up cross-sectional area to unit step (1%) increase. in take-up speed. 
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Fig. 8. G*Gw)/H loci for the step responses in Fig. 7. 

temperature T*, until G ~ G w )  starts to intersect the real axis. Finally, MS3ST 
modifies the T* value in a Newton-Raphson iteration scheme until the GzGw) 
locus intersects the real axis at the origin to attain neutral*stability. 
As was shown elsewhere,6JJ3 the response of the velocity $( G, T )  to a unit step 

tension $(T )  disturbance in the isothermal spinning of Newtonian fluids has the 
analytical expression eqs. (61): 

when 0 < T < (1 - $;')/log $w := 

$G, T )  = log $w when 7 > G (61) 

When the analytical expressions in eqs. (61) were used in place of the numerical 
transient solution by MS3, the critical draw ratio value in eq. (62) was ob- 
taineda: 

$w = 20.218 (62) 
The above critical draw ratio of 20.218 for an isothermal Newtonian spinline is 
in approximate agreement with the e3  = 20 given previously by Kase et al.6 and 
the 20.21 by GelderI5 and is estimated to have at least four-digit accuracy.. 

The counterparts of eq. (61) for spinlines of isothermal power law fluids 
are13 

1 
1 - n  

when 0 < T < - (1 - $ w l / n - l )  = 

1 - $w 1/n-1 

n - 1  
when T > $, $(G, 7) = H = (63) 
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TABLE I 
Critical Draw Ratio 6, Versus Power Law Exponent n 

+W 

n Present work Pearson and Shah, 197417 

0.0 1.08 
0.02 1.037 
0.04 1.116 
0.06 1.129 
0.08 1.310 
0.1 1.510 
0.2 . 2.074 
0.3 2.777 
0.4 3.674 
0.5 4.835 
0.6 6.357 
0.7 8.382 
0.8 11.12 
0.9 14.90 
1.0 20.22b 
1.1 27.96 
1.2 39.58 
1.3 57.85 
1.4 88.23 
1.5 142.8 
1.6 252.3 
1.7 512.3 
1.8 1340 
1.9 6456 
2.0 a 

a Derived analytically in eqs. (66) and (68). 
Due to eq. (61). 

1.51 
2.09 
2.785 
3.67 
4.83 
6.37 
8.43 

11.35 
14.68 
20.20 
27.99 
39.73 
57.84 
90.04 

1.1 

1.5. 

Pearson and Shah, 1974 

i a  I 0 0  1000 

Critical draw d i o  +w 

Fig. 9. Critical draw ratio 4, vs. power law exponent n. 

24) 
1972 
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Fig. 10. Transient response of spinline veiocity $(G, r )  to unit step increase in tension i ( r )  under 
the draw ratio-power law exponent combinations given in Table I. 

The analytical expression of velocity response 4( S,, T )  in eqs. (63) was used in 
a program d e d  PLW, similar in construction to MSSST, to compute the critical 
draw ratio qw under different values of power law exponent n, with the results 
shown in Table I and Figure 9. The presently obtained $w(n)  relation is in 
precise agreement with the previous values obtained by Pearson and Shah17 using 
eigen value approach to demonstrate>he equivalence of the two methods. 

Figure 10 shows the step responses $(c, T)/H vs. time 7/S, as given in eq. (63) 
and under the neytral stability conditions shown in Figure 9 and Table I. 'The 
normahation of $ and 7 with respect to the final H value and steady-state res- 
idence time & is irrelevant to stability. 1: is quite interesting to find in Figure 
10 that in the limit of n A= 0, the transient $/H in Figure 10 becomes a ramp and, 
in the limit of n = 2.0, #/H tends to a staircase shape. In fact, eq. (63) yields 

lim [&G, 7 ) / H ]  = 1 - - (64) 
+lo-- n 

lim [&G, 7)/H] = T/C (65) 

The staircase-shape step response given in eq. (64) is equivalent to the analytical 
expression of G,(s) in eq. (66) below when normalized time T/S, is used rather 
than time I: 

when 0 < T/S, < 1 

when 0 < 7/S, < 1 
+W-O 

The Gn(jw)/H locus in eq. (66) passes through the origin of the complex plane 
when n is equal to 2.0. Therefore, spinlines of isothermal power law fluids are 
neutrally stable when 

$ w = -  and n = 2  (67) 
as n approaches indicating that the $,(n) curve in Figure 9 tends to \c/w = 

2.0. 
The G ~ ( s )  for the ramp-shaped step response I)( S,, 7) in eq. (65) is 

The G2(ju)/H locus for eq. (68) above always passes through the origin of the 
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ISUTHERMRL POWER LRW 

G2 LOCI 
SPINNING 

-1 

Fig. 11. Gz(.jw)IH loci for the step responses in Fig. 10. 

complex plane. Therefore, the $w(n) curve in Figure 9 should pass through 
the 

$,=1 and n - 0  (69) 
point. The above two points given in eqs. (67) and (69) supplements the \c/w (n) 
curve fmt given by Pearson and Shah.I7 

Figure 11 shows the Gz(jw)/H loci under the neutral stability conditions given 

I I I 1 
1 

CRITICAL DRAW RATIOS: 
i 3 0 0 .  &- 20.0 
a / 77 

w 

a 

SP I NNERET ,2s. 0 
I ~ 1 . 1 1  c n n  I U ~ L  

CONDITIONS 
ROH-0.83 
C P 4 . 7 0  
OEN=8. 
TN02.270. 
ONO2-.268 
BINC.. 04 
€13500 
R-LOO. 
SOFT-I. 

TREEION OF 
7 \1. SOLIDIFICATION 

l!U7 I . . I . . . , l  
0 .-0 1 0 . 1  1 10 100 

STANTON NUM6ER.ST 
Fig. 12. Neutral stability map on the air temperature T' vs. Stanton number St plane. 
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in Table I. All loci in Figure 11 pass through the origin to confirm the neutral 
stability attained by program PLW. 

Shown in Figure 12 are contours of constant critical draw ratio ~w for ranges 
of ambient air temperatures T* and Stanton numbers St computed by program 
MS3ST and drawn by its graphic routine. Figure 12 is essentially identical to 
Figures 9 and 16 of Kase? except that many critical draw ratio values are now 
given instead of just one such value and that the curves are much more accurate 
than those in K a ~ e . ~  Parameter values used in Figure 12 except for T* are given 
as eqs. (41) and (42). 

The stability map in Figure 12 consists of two groups of curves. The para- 
bolalike peak-forming group of curves are the ones first discovered by Shah and 
Pearson18 with the spinline stable in the region below each of these curves. The 
second group of curves leveling off at  60°C are the limits of the region in which 
the spinline solidifies prior to take-up. When solidification occurs, the spinline 
is known to be always ~ t a b l e . ~ J ~  

Moving horizontally within the above region of solidification is equivalent to 
merely changing the length of the solidified part of the spinline without any real 
change in the dynamics of the molten upper ~ a r t . ~ 7 ~ 0  Therefore, a very small 
downward movement across the 6OoC solidification boundary LM from point 
2 to point X in Figure 12 is equivalent to moving all the way from 2 to Y. Evi- 
dently, point Y,  which is horizontally left of X and on the solidification boundary, 
is deep in the midst of the very stable region below the f i t  group of curves. 
Thus, we know that a very sudden change in the state of the spinline from very 
unstable to very stable takes place in crossing the solidification limit LM from 
2 to X .  In fact, the high stability of industrial melt spinning can be attributed 
to this very strong stabilizing effect of solidification since industrial melt spinning 
usually operates outside the above first group of curves but below the solidifi- 
cation boundary LM. 

The three G2(jw)/H loci shown in Figure 13 demonstrate the dramatic sta- 
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Fig. 14. Steady-state area and temperature profiles for points W, X, and 2 in Fig. 12. 

bilization of the spinline as the air temperature drops by a mere 2.5' from 62O 
to 59.5'C to cross LM while keeping St unchanged at 6.827. The G ~ G u )  loci 
for T* = 20 and'59.5'C are quite similar in shape and do not encircle the origin 
to show that the spinline is stable, whereas the G ~ G w )  locus for T* = 62°C is very 
much different in shape and makes three big encirclements of the origin to show 
a highly unstable spinline. The three steady-state solutions shown in Figure 
14 correspond to the three G ~ G u )  loci in Figure 13. The very sudden stabili- 
zation of spinline occurring in crossing LM must be due to the abrupt change 
in steady-state area profile as shown in Figure 14 brought about by the appear- 
ance of solidification, since coefficients f l  through f~ of the perturbation equations 
are determined solely by the steady-state solution. 

While the physical mechanism that causes the draw resonance instability has 
been discussed in various ways,1+6JJ4J5,21 the results of this section show quite 
clearly that draw resonance is caused by an instability occurring in the control 
system which forces the spinline to satisfy the downstream boundary condition 
of constant take-up speed by means of an information feedback through time 
varying tension. 

SENSITIVITY 

While spinline instability presents an interesting theoretical subject, its in- 
dustrial implications are quite limited since draw resonance is rarely encountered 
in production sites, with the chill roll casting of polypropylene film being probably 
the only exception. 

On the other hand, industrial melt spinning is always subject to unavoidable 
external disturbances such as fluctuating cooling air speed $y or extrusion vis- 
cosity, resulting in filament unevenness. This makes the sensitivity of spinlines 
to disturbances a practical concern, and this is where transfer function analysis 
is quite useful. 
In sensitivity analysis, it is convenient to measure the variation of: each variable 

in percentage deviation from the steady-state value. As eq. (A-5) shows, a si- 
nusoidal disturbance input of 1% amplitude given to the spinline produces a si- 
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Fig; 15. Frequency response of take-up cross-sectional area to six different disturbance inputs 
under constant take-up speed expressed ae Bode gain diagrams (gain). 

nusoidal change in output variable having the same frequency and an amplitude 
of I GGw) I %. This makes the Bode gain diagram, the plot of 20 loglo1 GGw) 1, 
a good quantitative measure of the effects of disturbance. 

The six Bode gain diagrams in Figure 15 show>he effects of six different dis- 
turbance inputs upon the cross-sectional area [(c, 7) at the constant speed 
take-up roll. The computation and graphics are due to program TRANS. 
Figure 16 shows corresponding Bode angle diagrams. Parameter values used 
are as given in eqs. (41) and (42). 

The gain diagram for spinneret hole area input i(0,7) s tar ts  at zero gain and 
levels off in the high-frequency range at a gain value approximately equal to 16. 
A zero gain means that a sinwidal change in spinneret hole area by an amplitude 
of 1% of the steady-state value results in a sinusoidal change in cross-sectional 

11-01-25 1o:ss 

STURBANCE INPUTS: 
EXTRUSION SPEED 

SPINNERET HOLE ARER 

SPINNERET TEMPERRTURE 
c a a u w i  RIR SPEED 

1 10 I 0 0  1000 10000 
FREQUENCY.Ot lE tR 

Fig. 16. Bode angle diagrams corresponding to Fig. 15. 
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C B ]  A E-+ 
Fig. 17. Formation of dent in stretching a cylindrical filament having lengthwise viscosity varia- 

tion. 

area at  take-up by an amplitude of 1%. In the high-frequency end, 1% input 
amplitude produces 1016'20 = 6.31% output amplitude, an amplification of 6.3 
times. 

The gain d$grams in Figure 15 for take-up speed input $(S,, T ) ,  extrusion 
speed input +(O, T ) ,  and spinneret hole area input go to zero gain at low 
frequencies, since very slowly increasing any one of the three input variables by 
1%, keeping other conditions unchanged, will result in a +1 or -1% change in 
take-up cross-sectional area. 

It is quite-significant that with the three disturbance inputs-spinneret 
temperature d(0, T ) ,  spinneret hole area, and extrusion viscosity &r)-the gain 
diagram levels off at  a high gain value as frequency goes to infinity. An input 
amplitude of 1% in extrusion viscosity, for instance, results in a take-up area 
amplitude of 1021/m = 11.2%, an amplification of disturbance by a factor of 11.2 
at high frequencies. This means that when the polymer extruded from the 
spinneret contains very fme particles of slightly different viscosity, a considerable 
filament unevenness is predicted to result. In fact, this effect can be explained 
by a very simple physical model. 

Suppose a fluid f i e n t  of uniform thickness consists of three sections in 
tandem connection as shown in Figure 17(a). The three sections consist of fluids 
B, A, and B, respectively, and fluid A is lower in viscosity than fluid B. When 
this filament is extended, the low-viscosity A part thins out faster than the B part 
to develop a square-dent unevenness. The depth of the dent increases with 
increasing draw ratio. In fact, this is the very mechanism which produces the 
areadiscoitinuity shown in Figures 3 and 5 and in eqs. (43) to (50). 

501 ' ' - " ' - ' l  ' ' """, ' . ' " ' I  ' ' ""- 
Furthermore, 

." 
1 10 100 I000  10000 

FREQUENCY.OtlECR 

Fig. 18. Frequency response of take-up cross-sectional area to extrusion viscosity disturbance 
under different air temperatures. 
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Fig. 19. Frequency response of take-up cross-sectional area to extrusion viscosity disturbance 
under different spinneret hole areas. 

it can be shown that the discontinuity or jump in $( G, T) at T/G = 1 in Figure 
3 makes the GGw) locus tend to a transportation lag circle whose center coincides 
with the origin. This is the reason why the gain diagram for extrusion viscosity 
input in Figure 15 tends to a large fixed value in the limit of infinite frequency. 
Thus, we know that a high-frequency viscosity variation at the spinneret can be 
the cause of considerable f h e n t  irregularity. 

In practice, spinneret temperature is insignificant as a disturbance input since 
the large heat capacity of the spinneret block makes high-frequency temperature 
changes unlikely. So is spinneret hole area input, because quick changes in hole 
area are not likely to occur in practice, except in the case of clogging, which usually 
renders the spinneret hole useless anyway. 

The gain diagram is attenuated in the high-frequency range under the three 
disturbance inputs, take-up speed, extrusion speed, and cooling air speed, 
probably because the spinline tends to damp these disturbances. 

The effect of cooling air speed variation $,, is surprisingly small. Even at  its 
peak, the gain is as low as -12 to make a 1% sinusoidal variation in $,, cause a 
mere = 0.25% sinusoidal variation in take-up cross area In view of the 
above findings, the authors strongly suspect that whatever thickness variations 
are present in industrially melt-spun undrawn filaments are due primarily to 
variations in the quality of the polymer emerging from the spinneret hole. 

Shown in Figure 18 are Bode gain diagrams for the effect of extrusion viscosity 
variation on take-up cross area variation under different ambient air tempera- 
tures T*. Increasing T* not only makes the spinline unstable, as shown in 
Figures 7,8, and 12, but also makes the spinline more sensitive to external dis- 
turbances. We can then conclude that the role of air cooling of the spinline is 
to stabilize the spinline and at the same time make it less sensitive to external 
disturbances. 

Figure 19 shows the Bode gain diagrams for the effect of extrusion viscosity 
on take-up cross area under different spinneret hole areas. Increasing the 
steady-state drawdown ratio by enlarging the spinneret hole keeping other 
conditions unchanged evidently has the adverse effect of making the spinline 
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Fig. 20. Frequency response of take-up cross-sectional area to spinneret hole area disturbance 
under different air temperatures. 

increasingly sensitive to disturbances in the high-frequency range. This is 
consistent with the common field experience that large drawdown ratios are 
conducive to uneven filaments. 

Figure 20 shows the response of take-up cross-sectional area to spinneret hole 
area disturbance input under different cooling air temperatures. Here again, 
increasing the air temperature quickly increases the sensitivity of the spinline 
in the high-frequency range. 

Shown in Figure 21 is the response of take-up cross-sectional area to cooling-air 
speed disturbance under different air temperatures. Increasing the air tem- 
perature increases spinline sensitivity mainly in the vicinity of the characteristic 
frequency of the spinline. When the air temperature approaches the spinneret 
temperature of 270°C, however, the sensitivity suddenly decreases toward zero. 
This is because cooling-air speed variation can affect the spinline only through 

40 

30 

t o  

1 10 100 1000 10000 
FREQUENCT.bMEGR 

Fig. 21. Frequency response of take-up cross-sectional area to cooling-air speed disturbance under 
different air temperatures. 
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heat transfer, and it tends to zero as the air temperature approaches the spinneret 
temperature. 

CONCLUSIONS 

A formal proof was given of the criterion of spinline stability stated in terms 
of transfer function'. 

A systematic procedure to express the dynamical characteristics of spinline 
in the form of the frequency response Bode diagrams was established, and so was 
a procedure to accurately compute the conditions of neutral stability of the 
spinline. These procedures were materialized in three computer programs- 
TRANS, MS3ST, and PLW-which contain computer graphic routines for the 
automatic drawing of Bode diagrams and neutral stability maps. In all cases, 
computer time requirements turned out to be modest. 

The authors would like to express their thanks to Professor M. M. Denn of the University of Cal- 
ifornia, Berkeley, for helpful discussions. 

APPENDIX 

TRANSFER FUNCTION 
In this appendix, basics of transfer function are reviewed to provide a background for the dis- 

cussions in the main text. 
Transfer function, usually denoted C ( s ) ,  is treated in practically all text books of control engi- 

neering and is defined as the ratio of the Laplace transform of output signal y ( r )  emerging from a 
linear system over the Laplace transform of corresponding input signal z ( r )  entering the linear system 
(see Fig. 22): 

(A-3) 

G ( s )  is a complex function of the complex variables and has a t  least one pole in the right-hand 

When the s is replaced with imaginary angular frequency j w ,  C ( j w )  gives the frequency response 
half of the complex s plane when the linear system is unstable. 

of the linear system. That is to say, when the input signal entering the system is 

L ( 7 )  = sin WT (A-4) 

the resultant output signal emerging from the system is expressed as 

y ( r )  = IG( jw) l  sin Iwr + L G ( j W ) l  (A-5) 

after the initial transients have subsided. The absolute value I G( jo) (  and angle ~ C ( j w )  are given 
by the relation 

G( jw)  = (G( jw) le jLG( jU)  

= JG(jo)l lcos LG( jU)  +; sin LC(jW)l 

= RlG(jw)l +;zlG(jw)l (A-6) 

-YisP+ 
Fig. 22. 
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The vector ~OCUS of G(jw is the locus of vector GGw) drawn on the complex plane when the angular 
frequency w is varied continuously from zero to plus infinity. 
The Bode diagram of G ( j w )  is usually drawn on a semilog graph paper by taking the angular fre- 

quency w on the semilog x axis and the gain defined as 20 loglo( Guw) I and the angle L G G ~ )  on the 
regular-scale y axis. 

Furthermore, when the input signal z ( r )  and the resultant output signal y ( r )  are random time 
functions satisfying ergodicity,22 the statistical attributes of z ( r )  and y ( r )  can be represented by 
their respective autocorrelation functions &z (u) and @,,,,(u) defined below: 

(A-8) 

When z(7) and y ( 7 )  are the deviations of cooling air speed and the resultant filament cross-sectional 
area, respectively, from their steady-state values, then bzs (0)  and 6yy (0) are the mean square de- 
viations in cooling air speed and filament cross-sectional area, respectively. 

Power density spectra 9, (s) and *,(s), defined below in eqs. (A-9) and (A-10). are the two-sided 
Laplace transforms of bzz(u) and d~,,,,(u): 

(A-10) 

cPYy(s) can be derived from the *,,(s) by the relation (A-11): 

*,o'w) = lGhJ ) l *  *zz(iw) (A-11) 

Once Z ( 7 )  and C ( j w )  are given, eqs. (A-71, (A-9), and (A-11) enable the computation of 9,Gw), 
which in turn can be used in the inverse Laplace transform below to yield 

(A-12) 

(A-13) 

where b,(O) is the predicted mean square filament unevenness due to the disturbance input 
Z ( 7 ) .  
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